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ABSTRACT
Large scale virtual worlds such as massive multiplayer online games
or 3D worlds gained tremendous popularity over the past few years.
With the large and ever increasing amount of content available, vir-
tual world users face the information overload problem. To tackle
this issue, game-designers usually deploy recommendation services
with the aim of making the virtual world a more joyful environment
to be connected at. In this context, we present in this paper the re-
sults of a project that aims at understanding the mobility patterns
of virtual world users in order to derive place recommenders for
helping them to explore content more efficiently. Our study fo-
cus on the virtual world SecondLife, one of the largest and most
prominent in recent years. Since SecondLife is comparable to real-
world Location-based Social Networks (LBSNs), i.e., users can
both check-in and share visited virtual places, a natural approach is
to assume that place recommenders that are known to work well on
real-world LBSNs will also work well on SecondLife. We have put
this assumption to the test and found out that (i) while collabora-
tive filtering algorithms have compatible performances in both en-
vironments, (ii) existing place recommenders based on geographic
metadata are not useful in SecondLife.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering
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1. INTRODUCTION
Location-based social networks (LBSN) enable users to check-in

and share places and relevant content, such as photos, tips and com-
ments that help others in exploring novel and interesting places they
might not have been before. Foursquare1, for example, is a popular
LBSN with millions of subscribers doing millions of check-ins ev-
eryday all over the world. This vast amount of check-in data, pub-
licly available through Foursquare’s data access APIs, has recently
inspired many researchers to investigate human mobility patterns
and behavior with the aim of assisting users, by means of person-
alized recommendation services, in exploring their surroundings
more efficiently [17, 18, 2].

Problem Statement. Virtual world environments, on the other
hand, are interactive 3D worlds where millions of users all around
the globe spend a lot of time every day to create and explore new
content. Rules are typically drawn from reality, such as gravity, to-
pography, locomotion, real-time actions, and communication. These
systems gained tremendous popularity over the past few years and
are poised for continued growth. Facebook, for example, recently
bought Occulus VR that produces virtual reality headsets for allow-
ing game players to immerse themselves in virtual worlds, which
indicates that there are big plans for virtual worlds on the table2.
With the massive amount of content available all the time, virtual
world users, especially newbies and the inexperienced ones, typi-
cally suffer from the information overload problem which under-
mines their ability to find relevant and exciting content. To tackle
this issue content suggestion services are typically provided to help
people in exploring content more efficiently [15].

While there are many works on recommender systems for vir-
tual worlds that focus on economical [7, 14] and social aspects of
these systems [12, 11], only a few of them try to understand mobil-
ity patterns in virtual worlds (see e.g., [13, 1]). These latter works
indicate a strong correlation between virtual and real world move-
ment patterns and although they suggest that existing real world
LBSN recommender approaches would perform similarly in virtual
worlds, to the best of our knowledge there are no studies yet show-
ing explicitly if this assumption really holds. The findings with this
respect have important implications for recommender systems de-
signers, because if this assumption holds, a whole suite of place
recommendation algorithms can be transferred from the LBSN do-
main to virtual worlds. If not, new algorithms need to be devised
for characterizing the specificities of virtual world users mobility
patterns.

1http://www.foursquare.com
2http://www.theguardian.com/technology/2014/jul/22/
facebook-oculus-rift-acquisition-virtual-reality
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Figure 1: Distribution of Check-Ins per Venue in Foursquare and
SecondLife (log-log scale).

In this paper we compared the check-in behavior of users in the
virtual world of SecondLife3 (with over 7 million active users one
of the largest virtual eviroments world wiede) and the real-world
LBSN Foursquare and explored in detail the extent to which place
recommender systems that are known to work well on real-world
LBSNs are applicable to virtual worlds.

Research Question. The research question that this research
was driven by is the following: Knowing that Foursquare and the
virtual world of SecondLife are comparable environments, to what
extent are current real-world LBSN place recommender algorithms
applicable to SecondLife?

Results. Based on a number of experiments, we find that while
both worlds are indeed comparable in some aspects, such as the
check-in distributions of Foursquare and SecondLife users, recom-
mender algorithms purely based on a distance function however
are not suitable for the virtual world of SecondLife, i.e., they do
not have comparable performances. We also evaluated state-of-the-
art collaborative-filtering algorithms based on user-based k-nearest
neighbors (KNN) and matrix factorization and found out that these
algorithms have comparable performances in Foursquare and Sec-
ondLife.

Contributions. The main contributions of this work are: (i) the
study of current real-world LBSN recommender algorithms in the
virtual world context and (ii) the insight that, although compara-
ble in some aspects as suggested by related works, some of the as-
sumptions upon which location recommenders of real-world LBSN
recommenders operate, does not seem to hold in SecondLife. An-
other contribution of this work is the introduction and provision of
a novel data set that allows the study of human mobility patterns in
virtual worlds.

2. EXPERIMENTAL SETUP
In this section we describe in detail our experimental setup, i.e.,

the data sets and recommender approaches, as well as the evalua-
tion protocol used to investigate our research question.

2.1 Datasets
Our study relies on data from Foursquare containing the check-in

history of 11, 326 users collected from January 2011 to December
2011. This data set was collected and used by the authors of [6]
and is publicly available under request at [5]. The SecondLife data4

3http://www.secondlife.com
4The data set can be obtained for free per request.

Data #users #venues #checkins Sparsity
Foursquare 11,326 176,452 537,877 99.9%
SecondLife 4,771 17,167 120,078 99.8%

Table 1: Basic statistics of the datasets.

was collected from October 2014 to November 2014 containing the
check-in history of 34, 277 users5. Figure 1 depicts the distribution
of check-ins per venue in Foursquare (a) and SecondLife (b) in
log-log scale. Please note that they are very similar to each other,
i.e., some venues are very popular and receive most of the check-
ins, whereas the rest lies in the long tail of the distribution. The
distributions of check-ins per user in both worlds follow a similar
pattern, which we omitted due to space constraints.

2.2 Place Recommender Approaches
A key feature of LBSNs is the availability of geographic meta-

data about checked-in places. In Foursquare and SecondLife, for
example, the lat-long coordinates of the checked-in places are avail-
able. Several place recommender approaches have appeared that
exploits geographic metadata of users and venues in order to im-
prove the recommendation quality, under the assumption that users
prefer to check-in venues that are nearby the venues they have vis-
ited in the past [9, 3, 2, 17].

To test whether this assumption holds in SecondLife, we have
chosen two state-of-the-art place recommenders, purely based on
geographic distance (aka location-aware), proposed in [17] and [2].
Given that such recommenders work well in Foursquare, as demon-
strated in the aforementioned works, it should also work in Sec-
ondLife, assuming that the check-in behavior of users in both sys-
tems are comparable.

The approaches proposed at [17, 2] assign higher weights to can-
didate places that are nearby the places that the target user has al-
ready checked-in. Ye at al. [17] assume that the pairwise distance
distribution of check-ins per user follows a power-law and propose
to learn the parameters of the distribution by a simple linear re-
gression on a log-log transformation of the distribution. Thus, the
probability of any pair of places x and y being checked-in is com-
puted as follows:

P (dist(x, y)) = a ∗ dist(x, y)b

logP (dist(x, y)) = w0 + w1 ∗ log dist(x, y)

where a = 2w0 , b = w1 and dist returns the distance between x
and y (Great-Circle on Foursquare and Euclidian in SecondLife).
Now, the probability that a given user u will check-in venue l is
modelled as the conditional probability P (l|Lu), where Lu is the
set of all venues checked-in by user u, computed as follows:

P (l|Lu) =
∏

l′∈Lu

P (dist(l, l′)) (1)

A ranked list of venues is then generated using Equation 1 above
and the top-N are recommended. We will refer to this method as
LinearRegression.

A similar approach was proposed by [2] where Gaussian kernels
were used for modeling the check-in behavior of users. The prob-
ability that a given user u will check-in place l is then modeled

5Similar to the real world, SecondLife offers since 2009 a location-
based service which allows users to check-in places and share this
information with friends in a Facebook-like social network called
mySecondLife (see [12, 11] for more information).
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Figure 2: Results of the compared algorithms in terms or precision,
recall and NDCG.

as:

P (l|Lu) =
1

|Lu|
∑

l′∈Lu

1√
2π
e−
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dist(l,l′)2 (2)

We will refer to this method as GaussianKernel.
The algorithms above achieve better performance when com-

bined with collaborative filtering-based algorithms such as the clas-
sic user-based KNN or matrix factorization [3, 17]. These algo-
rithms operate under the assumption that users who checked-in the
same places in the past tend to check-in the same places in the
future. Therefore, we also considered in our study two collabora-
tive filtering algorithms that are solely based on the check-in his-
tory of users (i.e. do not use geographic information, but only the
user-place interactions in terms of check-ins) observed in the train-
ing data, namely, the user-based KNN and a state-of-the-art based
on matrix factorization known as BPRMF (Bayesian Personalized
Ranking Matrix Factorization) [10].

To run the collaborative-filtering algorithms we have used the
recommender systems library MyMediaLite [4] adopting the de-
fault settings for the collaborative-filtering recommenders. The
location-aware algorithms were implemented on top of MyMedi-
aLite in order to reuse the evaluation functions available.

2.3 Evaluation Protocol
For computing the recommendations we considered only the users

with 10 or more check-ins in distinct venues. We split the data ran-
domly keeping 90% of users’ check-ins for training and the rest
for testing. We repeated this process 5 times in order to measure
some variability in the results. Table 1 summarizes the training
data after this pre-processing. To evaluate the recommenders we
have used prec@5, recall@5 and NDCG (Normalized Discounted
Cumulative Gain), which are typical evaluation metrics in the rec-
ommender systems field [8].

3. RESULTS
Figure 2 shows the results of the location-aware recommenders

in comparison to the most popular recommender on both data sets.
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Figure 3: Comparison of pure CF-based algorithms for place rec-
ommendations in SecondLife and Foursquare.

The most popular simply recommend the most frequently checked-
in venues for all users and is usually used as a baseline for testing
new recommender algorithms. Please note that while in Foursquare
the location-aware recommender is clearly better than the Most-
Popular, in SecondLife the location-aware has worse or equal per-
formance than the most popular approach.

In general, location algorithms based on geographic distances
alone, like the ones we are using here, do not produce highly accu-
rate recommendations. Instead, they are used as additional contex-
tual signals on an ensemble of recommenders that usually include
collaborative-filtering algorithms.

The fact that such location-aware algorithm is better than the
most popular recommender in Foursquare provides a clear indica-
tion about the importance of this kind of signal for predicting users’
check-in behavior, in contrast to SecondLife where this does not
seem to be the case.

In order to better understand the aforementioned results, we plot-
ted the pairwise distance distribution between the users’ check-
ins in Figure 4. In the case of the Foursquare distribution (Fig-
ure 4.a), there is a clear pattern indicating that users prefer to check-
in venues within a small distance from his/her past check-ins. Please
note that such pattern does not appear in the SecondLife distribu-
tion (Figure 4.b). In fact, in SecondLife users seem to prefer vis-
iting places that are farther apart from each other. A possible ex-
planation to this lies in the fact that SecondLife users can easily
teleport anywhere in the virtual world map, thus diminishing their
distance dependence when deciding to visit a new place.

Figure 3 shows the results of the collaborative-filtering algo-
rithms. Note that in this case the recommender performances are
comparable. The best result comes from UserKNN, whereas BPRMF
and the MostPopular have comparable performance. In case of
Foursquare, the performance can be improved by combining the
location-aware and collaborative filtering recommenders. As for
SecondLife, this would probably not work, which suggests that
new approaches for modeling the mobility patterns of SecondLife
users are needed, putting, for instance, a higher preference to places
which are farther away from each other.
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Figure 4: Distribution of pairwise check-in distances per user.

4. CONCLUSIONS & FUTURE WORK
Being rich data environments, many research works have ap-

peared recently with the aim of using virtual worlds as proxies for
studying and predicting real world social and behavioral character-
istics of humans. But for this to work, it is required that human be-
haviors in virtual spaces and their counterparts in the offline world
are similar. This requirement is known as the Mapping Principle
and has to be established on a case-by-case basis, i.e., not all virtual
worlds and virtual behaviors map to the offline world [16]. In this
paper, we also contribute to this strand of research by (i) compar-
ing the check-in behavior of SecondLife and Foursquare users and
(ii) evaluating the extent to which real-world LBSN recommender
systems are useful in virtual worlds such as SecondLife. Our main
findings are summarized below:

• The check-in distribution, per venue and user, of SecondLife
and Foursquare are very similar.

• While Foursquare users tend to check-in places that are nearby
the places they visited in the past, SecondLife users present
the opposite behavior, tending to check-in places far apart
from one another.

• Most popular and collaborative-filtering algorithms, based
on KNN and matrix factorization, have comparable perfor-
mances considering both environments.

For future work we plan to investigate alternative approaches for
modeling the distance dependence of users in virtual worlds, as
well as other factors that influence virtual world users’ decision
on checking-in a new place. In this context we plan to investigate
recommender models for other interesting entities such as events
and along other virtual environments.
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